
Prep
rin

t

Exercise Task Generation for UML Class/Object
Diagrams, via Alloy Model Instance Finding

Full Paper

SACLA 2019
c©The authors/SACLA

Violet Kafa, Marcellus Siegburg, and Janis Voigtländer∗

University of Duisburg-Essen, Germany

∗janis.voigtlaender@uni-due.de

Abstract. The Unified Modelling Language (UML) is the standard for
designing and documenting object-oriented software systems. Its most
frequent use is for static modelling in the form of class diagrams. A
correlated concept is that of object diagrams. An object diagram may
or may not adhere to a given class diagram, and the understanding of
this connection is key to correctly using class diagrams in practice. We
present an approach for automatic generation of verified, non-trivial,
conceptually relevant examples and counterexamples of class/object di-
agram combinations, aimed at providing exercise tasks in a university
course setting. The underlying technique is model instance finding using
the Alloy specification language and analyser. We provide an implemen-
tation of our approach in an e-learning tool.

Keywords: E-learning, UML, Alloy.

1 Introduction

The Unified Modelling Language (UML) [1] is widely used in the software indus-
try and academia. It is a standard for specifying, visualising, constructing and
documenting artifacts of object-oriented systems and has a rich set of diagram-
matic notations along with their well-formedness rules. The language of class
diagrams (CDs) and object diagrams (ODs) is part of the UML standard and
supported by many commercial and academic software modelling tools. These
specific diagrams are also a typical subject matter in a software modelling course
at university.

To facilitate learning and understanding of the CD and OD concepts, it is
desirable to confront students with many and diverse examples and counterex-
amples. For instance, a useful exercise task in a software modelling course is to
present a certain number n of CDs and a certain number m of ODs and ask
students to determine for each combination of CD and OD whether the latter
is a correct instance of the former or not, along with explanation of the reasons
(such as possible violations of multiplicities or other constraints). Fig. 1 shows
a hand-crafted exercise task of this kind, with n = 2 and m = 5, used in a con-
crete course in the past. Our undertaking here is to develop tooling that helps



Prep
rin

t

2

the instructor by systematically and automatically constructing similar exercise
tasks.

To that end, formal method techniques from the verification and model gener-
ation domain are employed. The basic idea is to randomly generate CDs subject
to certain complexity constraints, and with a reduced feature set according to
didactic considerations, and to use the Alloy specification language and anal-
yser [2,3] to generate appropriate model instances and non-instances, to be pre-
sented as candidate ODs to the students. To make use of Alloy, we employ (and
extend/revise) a translation from CDs to Alloy modules that was introduced in
related work on CD analysis and OD generation [4]. For the generation of inter-
esting counterexample ODs, which was not a topic of the mentioned CD2Alloy
work, we devise a strategy that involves variations of the original CD, such as
removing or adding some relationships, manipulating some multiplicities etc.

Task 1 Object diagrams (10 points)

Let the following class diagrams be given, each of which shows connections between the classes
A, B, C and D.

(1.)

A B

C D
0..* 0..*

1 1 (2.)

A B

C D
0..* 2

Indicate, for each of the following object diagrams, whether it is valid for the above class
diagrams (ten answers altogether). Where that is not the case according to you, explain why
and give all reasons.

(a) a:A

c:C

(b) b:B

c:C d:D

(c) :A :B

c:C d:D

(d) a:A

c:C d:D

(e) a:A

d1:D d2:D

Fig. 1. A sample exercise task.

2 Background on UML’s CDs and ODs

There is a vast literature on UML, including many textbooks introducing its
various diagram types [5,6,7], so we will not provide another substantial intro-
duction here. But we want to at least give motivating examples of a CD and
a conforming OD, to illustrate which model elements these types of diagrams
can contain, as well as to shortly discuss the relevant relationships. Moreover, we
already briefly delineate what aspects we will not cover in our generated exercise
tasks (more details then in the next section, about didactic considerations).

Fig. 2 shows a CD, illustrating the static design of a certain object-oriented
system. In it, we see classes, some with attributes and operations/methods, an
inheritance relationship, and additional relationships in the forms of composi-
tions and general associations with attached multiplicities.



Prep
rin

t

3

Department

name: string

Office

address: string
voice : integer

Headquarter

Company

1..*1..*

0..*0..*

0..*

1..*

Person

name: string
employeeID : integer

getContactInformations() : string
getPersonalRecords() : string

Class

Attributes
Multiplicity

Composition

Inheritance

Operations

Association

Fig. 2. A CD.

Fig. 3 shows an OD conforming to the CD from Fig. 2. Note that no oper-
ations/methods are present in ODs. In our exercise tasks we will actually cover
neither attributes nor operations/methods, since we are more interested at this
point in teaching in considering the relationships between classes/objects.

c : Company

d1 : Department

name : R&D

o : Office

address : Hauptstr.

voice : 888

p : Person

name : Erin

employeeID : 1234

Object Link

Attribute values

Object name

Fig. 3. An OD.

Inheritance between classes is not reflected on the object level by explicit
connections/links between corresponding objects in any way. Instead, inheritance
expresses that the child class has all the same relationships to other classes as
the parent class has, and that will be reflected on the object level. For example,
according to Fig. 2 every headquarter is a department, so in Fig. 3 we could
have replaced d1 by an object of type Headquarter and still let it have the
link to c.



Prep
rin

t

4

Association between classes, such as between offices and persons or between
offices and departments in Fig. 2, is a broad term that encompasses just about
any logical connection between classes. On the object level, associations are
represented by links, such as between o and p in Fig. 3. Multiplicities at the
ends of associations in a CD express how many objects of one class can be
related to one object of the other class. In our example, each office needs to
be linked to at least one person (due to the multiplicity 1..∗ at one end of the
relevant association), but not each person needs to be linked to an office (due to
the multiplicity 0..∗ at the other end). So in Fig. 3 we could not simply delete p
(while keeping o), but we could add another object of type Person without
adding any links. We consider 0..∗ the default multiplicity, so it will not always
be depicted (see Fig. 1).

Another kind of relationship is aggregation. It does not appear in Fig. 2, but
in Fig. 1, see the hollow diamond shapes there. While from a modelling perspec-
tive aggregations are special, in that they are intended to represent whole/part
relationships, from a formal perspective concerning conformance of ODs to CDs,
aggregations are to be handled just like associations. Their default multiplicities
are also as for associations.

Finally, a composition relationship is a stronger form of aggregation which
actually comes with additional constraints in considering conformance of an OD
to a CD. Namely, every “part” must be linked to at most one “whole”. The
example in Fig. 2 has a composition relationship between companies and offices,
and another one between companies and departments, with companies playing
the role of “whole” in both cases (as marked by the filled diamond shape). So
in Fig. 3 there could be additional companies, but they could not also be linked
to the existing objects o and d1. Instead, there would have to be additional
offices and departments present, due to the multiplicity 1..∗ at the “part” end
of both composition relationships. The default multiplicity at those ends would
have again been 0..∗, while at the “whole” end of composition relationships the
default multiplicity is 1..1 (which would be written simply as 1) and actually
only the multiplicities 0..1 and 1..1 are allowed there at all.

Besides the fact that we will not include attributes or operations/methods
in our generated examples (manifesting in depictions as in Fig. 1, each class
and object being just a simple box with name and/or type inscribed, instead of
additional compartments in the boxes as in Figs. 2 and 3), another difference
from what we have seen in the current section is that the generated examples will
be artificial, with class and object names like A, B, c, d, instead of real world
notions like Company etc. The reason is that we want to use the generated
exercise tasks for teaching the formal concepts of the CD and OD language,
and the correct interplay between model elements, emphasising the similarities
and differences between the relationship flavours considered. Thus enabled, free
modelling set in real world scenarios is part of separate activities in the course.



Prep
rin

t

5

3 Didactic Considerations

What makes a good generator for exercise tasks of the kind considered? We
would like to be able to generate many different, but analogous tasks, in order
to provide students with ample opportunities for practising without repeated or
predictable instances/solutions. We want to be able to control the complexity
and difficulty of tasks, for example to enable a transition from simple, prepara-
tory instances to more challenging ones, or to level the field for student groups
from different backgrounds (e.g., ones that have already had an object-oriented
programming course and thus know some UML concepts at least from a pro-
gramming language perspective, and ones for which this is not the case). There
are additional dimensions along which we would like to be able to parametrise
the task generation. For example, at a certain teaching stage we might want to
tailor tasks to focus on one specific concept (“give us only tasks in which the cor-
rect understanding of aggregation makes the difference between right and wrong,
despite other relationships also being present”) or to exclude some concept (“do
not produce tasks with occurrences of composition relationships, because we
have not yet covered that in the lecture”). Generated tasks should be non-trivial
and interesting, in the sense that there is really something to discover in them.
For example, if the task is to decide for a CD and two ODs which one of the
latter two conforms to the CD and which one does not, then it should not be the
case that one of the two ODs is obviously far off from possibly having anything
to do with the given CD, thus making the question boring and uninstructive.
Instead, we should have a degree of control over how far off a counterexample
OD is allowed to be from a positive example. And while it might be obvious, it
is crucial to ensure that the generated exercise tasks are correct. If we consider
a certain OD to be (or to not be) conforming to a certain CD, and use that
assessment in feedback to students, or for grading, then it better be the case
that it holds true. When hand-crafting artificial tasks that try to emphasise a
certain CD/OD language aspect as well as aiming to produce interesting and
challenging instances, it can be surprisingly easy to violate this assurance by
accidentally not taking into account some subtlety of the UML standard.

Besides the above general considerations, there are more concrete decisions
to make about the design of the exercise tasks (generator). For example, in
Figs. 1, 2, and 3, we have not annotated names for associations, aggregations,
and compositions. UML does allow such annotations, and sometimes they – or
some other means of distinguishing links – are needed to properly decide about
conformance between CDs and ODs. As a simplistic example, consider the two
CDs on the left in Fig. 4 and assume we want to provide an OD that conforms
to the first CD, but not to the second CD. The OD on the left in Fig. 5 fits the
bill. But if we omit association names, see the right halves of Figs. 4 and 5, this
is not discernible anymore, because now the link between objects a and b could
be accidentally perceived as stemming from the association between A and C
that B inherits in the second CD. The examples in Fig. 1 were carefully crafted
to ensure that no such confusion exists, or put differently, that students always
have a chance to puzzle out which association or aggregation a link corresponds



Prep
rin

t

6

to, even in the absence of names. But for our task generator we have decided
to always provide those names, thus making the generated tasks more beginner
friendly in that respect.

A

B

x

C

A

C

y

B

A

B

C

A

C

B

Fig. 4. CD examples with and without association names.

a : A

b : B

x

a : A

b : B

Fig. 5. OD examples with and without association names.

On the other hand, we do omit other annotations on associations, aggrega-
tions, and compositions: namely role names and navigation or reading directions.
This also has an impact on the level of challenge the checking of conformance
poses. For example, if we present the CD shown on the left in Fig. 6, then stu-
dents are likely to be sceptical about conformance of an OD that has two y links
between the same two objects of type A, as in the middle of Fig. 6. After all,
even though A inherits from B and is thus allowed (since B is) to be linked with
A via y, the double linkage seems strange and at least subtly at odds with the
multiplicities written on the ends of y in the CD. If, however, we were to anno-
tate direction arrows on the associations in the CD, and then present the OD
also with direction arrows, as on the right in Fig. 6, then the situation would be
less surprising (since the revelation “the two y-links go in opposite directions”
makes things clearer), and thus possibly less of a challenge. The point here is,
even with names provided on associations, aggregations, and compositions, there
are still interesting bits to puzzle out by the learner.

We have made further decisions about the CDs and ODs to generate. For ex-
ample, we do not allow multiple inheritance and we impose structural constraints
(such as no two associations between the same pair of classes in a CD) that are
not mandated by the UML standard. These decisions are also driven by what
aspects we want the learning to focus on, by experience with hand-crafted exer-
cise tasks, and by trying to balance challenge and approachability of tasks. We



Prep
rin

t

7

A

B

y

1

0..1

C

D

z
1..*

0..1

d : D

: D

a : A

z

a1 : A

y

z

y

d : D

: D

a : A

z

a1 : A

y

z

y

Fig. 6. A somewhat surprising case of conformance.

might revise them, or the decisions about providing association names and/or
other annotations, as we gain experience with automatically generated tasks. In
any case, even within the frame of the decisions as currently set, we have enough
means to produce tasks of varying difficulty, such as by parametrisation over the
numbers of classes, inheritances, associations, . . . , objects, links.

4 Background on Alloy usage

It is important that the exercise tasks we will generate automatically, and present
to students without prior inspection of every instance by an instructor, are one
hundred percent semantically correct. If the e-learning tool assesses that a certain
OD does, or does not, conform to a certain CD, then that should be guaran-
teed. Simply programming a random generator for CD/OD pairs that should
serve as examples and counterexamples in an exercise task would risk introduc-
ing errors, even under best effort to truly implement what the UML standard
implies. Moreover, using such a hand-written coupled generator, it would prob-
ably be difficult to tailor generated tasks for special, possibly changing needs,
such as emphasis on certain model elements and diagram features. So instead
we decided to take a more declarative, and at the same time verifiable, route.
We build on the CD2Alloy work [4] that translates CDs to modules in Alloy, a
specification language based on mathematical sets and relations and backed by
SAT solving [3].

Compared to other translations from the UML domain to Alloy [8,9,10] (and
in reverse, to interpret models found by the SAT solver back into UML as ob-
ject diagrams), the CD2Alloy translation performs a deeper embedding of CD
concepts into the Alloy logic. That is, instead of rather directly mapping CD con-
cepts (classes, associations, . . . ) to quite-similar-but-not-really-equivalent Alloy
concepts (signatures, fields, . . . ), the translation in some sense explicitly pro-
grams out the UML semantics as functions and logical predicates. That allows
more accurate representation, capture of more UML features, and very impor-
tantly, analysis over more than one CD at a time. In particular the last aspect
will be crucial for us here. The details of the embedding/translation are not



Prep
rin

t

8

of superior importance for the current work, but to at least provide a flavour,
Fig. 7 shows excerpts of the Alloy module obtained for the CD shown on the
left in Fig. 6. For example, the fun definitions essentially express that in any
model the set of objects of type A is exactly the set of objects directly belong-
ing to A (since A has no subclasses in the CD), while for example the set of
objects of type B is the union of the sets of objects of B, C, and A (due to
the inheritance relationships in the CD). And the lines involving ObjLUAttrib

and ObjLU express the multiplicities at the two ends of association y in the CD,
using predicates whose definitions are not shown in the excerpt. The translation
rules are described in a technical report [11]. For our purposes here we use a
subset of them (due to our restricted set of CD features used), and actually had
to perform a few revisions/adaptations (to more exactly express some desired
constraints). But the fundamental principles are as in the previous work.

. . .

one sig y extends FName {}

. . .

fun ASubsCD : set Obj {

A

}

fun BSubsCD : set Obj {

B + CSubsCD

}

fun CSubsCD : set Obj {

C + ASubsCD

}

. . .

ObjLUAttrib[ASubsCD , y, BSubsCD , 1, 1]

ObjLU[BSubsCD , y, ASubsCD , 0, 1]

. . .

Fig. 7. A glimpse at Alloy code for the CD from Fig. 6.

An Alloy module as in Fig. 7 (completed) can be given to the Alloy anal-
yser, which will try to find a model/instance, in a finite scope, and will return
any ones existing in a textual form. That textual form can be interpreted as
describing ODs. In fact the ODs in the middle and right (depending of whether
navigation directions are to be depicted or not) of Fig. 6 are thus obtained. An
Eclipse plug-in exists that implements this whole workflow, thus for example
allowing a software engineer to check whether a certain software design is mean-
ingfully populated at all (by letting ODs be created for inspection, from the CD



Prep
rin

t

9

of a software system/component under development). Since our objective here
is different, we need a different workflow/approach (see next section), but the
CD2Alloy translation is a crucial ingredient.

It is worth pointing out that we are still using a hand-written random gener-
ator, but not for CD/OD pairs, just for CDs. That is, CDs are not generated by
the Alloy analyser from some meta model. Instead, we have programmed a CD
generator (see description in Section 6) that is driven by our didactic consid-
erations about which features to support, which structural constraints (beyond
those mandated by the UML standard) to adhere to, etc., see also relevant dis-
cussion in the previous section. That was a pragmatic decision and does not
incur the risk painted in the first paragraph of the current section, concerning
semantic correctness. After all, creating CDs essentially just means we need to
get the syntax right. The semantics will be covered (and verified!) via Alloy.

5 Approach to Counterexample Generation

Being able to provide positive instances of ODs for a given CD is nice, but only at
most half (actually much less) of what we need for our exercise task generation.
We also need to be able to provide negative instances, counterexamples. One
tempting approach, given the deep embedding of CD concepts into Alloy logic
that CD2Alloy performs and which allows first-class use of all of Alloy’s logic
expressivity on top, would be to simply make use of logical negation. That is,
given that the OD in Fig. 6 was obtained (along with many others) by calling
the Alloy analyser on the module from Fig. 7 with command:

run { cd } for 4 Obj

where cd is the name of a predicate that builds on all the things introduced by
the translation for the given CD (such as the fun ASubsCD definitions etc.), and
where the 4 stands for at most how many objects should be present in the OD, a
naive attempt at counterexample generation would be to instead call the Alloy
analyser on the same module but with command:

run { not cd } for 4 Obj

Unfortunately, the results are of questionable value. Fig. 8 shows the OD-style
rendition of the first of a multitude of instances found. That is indeed not an OD
conforming to the CD from Fig. 6, but it is utterly useless for an exercise task,
because it is off at first look. In fact, even if we were to somehow structurally
constrain or filter out instances that seem too far off from being worth showing
as solution candidates in an exercise task, for example by discarding everything
with perceivedly too many parallel edges, we would not necessarily be better
served. Specifically, without additional precaution there lurks a potential deeper
problem here, because the predicate cd conceptually expresses:

“[what Alloy finds as model] is an OD instance of the given CD”



Prep
rin

t

10

and the logical negation of that (in formal or in natural language) happens to
not be:

“is an OD that is not an instance of the given CD”

but instead simply:

“is not an OD instance of the given CD”

which actually means:

“is not an OD or is an OD that is not an instance of the given CD”.

So it is not ruled out up front that not cd might produce structures that are
not even proper ODs. We could dispel this concern by additional analysis, but
that does still not generally give us instances that would serve as useful coun-
terexamples in an exercise task.

d : D

: D

z y

d2 : D
z

y

c : C

z

y
y

y

y

y
z

z
z

z

Fig. 8. Result of a naive attempt at counterexample generation.

Instead, we make use of a crucial advantage of the CD2Alloy translation/em-
bedding over competing approaches, namely its ability to perform analysis over
more than one CD at once. This ability was already briefly mentioned in the pre-
vious section and comes in handy now. The basic idea is that if we have a CD
and want to produce a counterexample OD for it, we could look for a structure
that is not just not an OD for that CD, but at the same time actually is an OD
for a CD similar to, but somewhat mutated from, the original CD. That way,
we can guarantee that we are not getting something wildly off, and we can even
control in some sense how much and which kind of conceptual distance there
will be between OD examples and counterexamples we present, by controlling
the degree and character of mutation applied on the CD level. For example,
if we want to emphasise/train the semantics of composition relationships, we
could take an original CD that contains a composition, produce a new CD via a
mutation that specifically affects this composition (moving one of its endpoints
to a different class, changing the multiplicity at one of its ends, or even turning
the composition into an aggregation or other relationship), and then look for an
OD that is an instance of the mutated CD, but not of the original CD. What we
will get is an OD that is a counterexample for the original CD, and is so not by
having nothing to do with that original CD at all, but instead more targetedly by
something having to do with the composition relationship we touched. Of course,



Prep
rin

t

11

we would not tell the students that touching this composition relationship in the
way we did is what happened in the background, in order to not disclose too
much about what they should actually discover in the example/counterexample.

So our approach in its simplest form can be described as follows. We have a
CD (randomly generated), and translate it into an Alloy module. The relevant
all-encompassing predicate resulting from that could be called cd1.1 We mutate
the original CD to a similar one, and put that one through the CD2Alloy trans-
lation as well, resulting in an overall predicate cd2. By combining Alloy modules
appropriately (there is some overlap between modules due to common defini-
tions, so combining does not simply mean concatenating), we obtain a single
one for which we can call verification commands like:

run { (not cd1) and cd2 }

or:

run { cd1 and (not cd2) }

Instances found by the former call correspond to relevant OD counterexamples
for the original CD, as outlined in the previous paragraph. Instances found by the
second call could also be used, as interesting positive examples for the original
CD, or of course as counterexamples for the mutated CD, or indeed as part in
cross check exercise tasks like the one in Fig. 1.

The approach as described above is sketched in Fig. 9. Actually, we use a
more elaborate strategy, to be discussed in the next section. Here, let us just
note that it is not hard to imagine that the combination approach generalises
well to more than two CDs, so that we can consider instances that have certain
positive or negative inhabitation properties regarding three or more CDs. That
will be used to create more interesting exercise tasks.

As a side note, an alternative approach could conceivably have consisted of
not mutating a CD, for which one or more conforming ODs are already given
and counterexample ODs are still being sought, but instead performing mutation
on the OD level, that is, turning a conforming OD into a counterexample OD
by deleting a link or similar changes. However, we would then still have to
check whether the obtained OD has all the desired characteristics relative to the
given CD(s). After all, deleting a link may or may not turn an example into a
counterexample. So after applying OD mutations we would have to separately
establish that what we got is an OD that conforms to the CD(s) we want it
to conform to and does not conform to the CD(s) we want it to not conform
to. And if it turned out that we did not get what we wanted, we would have
to try some other changes. Instead of such a search-and-check procedure, our
declarative approach (expressing the desired characteristics in Alloy verification
commands) is more targeted and directly gives us appropriate ODs, if they exist.

1 That involves variants of the stuff shown and elided in Fig. 7, e.g., definitions fun
ASubsCD1 etc., while for the predicate cd2 considered in a moment, separate variants
fun ASubsCD2 etc. would be produced.



Prep
rin

t

12

original class
diagram
(syntax)

Alloy module
for the original class

diagram

similar class
diagram
(syntax)

Alloy module
for the similar class

diagram

Automatic
random

generator

intelligently (randomly) modify

combined Alloy
module for both class

diagrams

run cd2 and not cd1

SAT solver

CD1

run cd1 and not cd2

SAT solver

suitable instances for
the original class

diagram

suitable instances for
the similar class

diagram

positive and negative
examples

Verification technique

Translation to Alloy

CD2

Alloy analyser

ODs

CD2Alloy CD2Alloy

Fig. 9. Sketch of the approach in its simplest form.

6 Strategy and Implementation

As already mentioned, we are using a hand-written random generator for CD
syntax without attributes or methods. The generation is parameterised by a
configuration comprised of a minimum and maximum number each for classes,
inheritance relationships, associations, aggregations, and compositions. The de-
fault configuration is: exactly four classes, between one and two inheritances, at
most two associations, at most two aggregations, and at most one composition.
The multiplicities used in the CD are drawn from a small set of choices: the de-



Prep
rin

t

13

fault multiplicities and some special cases like 0..1, 0..2, 1..∗, but not arbitrary
n..m. We do not create CDs with multiple inheritance (one class having two
outgoing inheritance arrows) and impose some additional structural constraints:

– Classes have no self-relationships of any kind. That is, a class cannot inherit
from itself, cannot have an association relationship to itself, etc. Note that
this does not mean that objects cannot have self-links, in fact we will see the
opposite at the end of this section.

– There is at most one relationship between the same pair of classes.
– There are no inheritance cycles and no directed composition cycles.

Some of these are actually already imposed by the UML standard, which we
adhere to anyway and also beyond what is listed above.

When it comes to mutating a CD to another one, we randomly choose from
the following operations (while preserving all constraints mentioned above):

– adding a new relationship between any two classes,
– removing an existing relationship,
– flipping the direction of an existing inheritance, aggregation, or composition

relationship,
– exchanging an existing relationship with another relationship, e.g., turning

an inheritance into an aggregation,
– changing an existing multiplicity by increasing, decreasing, or shifting its

range.

Note that some of these have the character that a CD2 obtained from a CD1 can
only ever have more (or only ever have fewer) OD instances than originally. In
such cases, simply using run {cd1 and not cd2} and run {cd2 and not cd1}

as sketched in Fig. 9 would not lead to interesting exercise task results, since at
most one of these commands would actually produce instances. Possibilities to
counter this include to perform more than one mutation and/or to involve more
than two CDs. Another reason to involve at least a third CD is that we would
also like to present ODs in an exercise task that do not conform to either of
two given CDs.2 But simply calling run {not cd1 and not cd2} is not a good
idea, due to the same issues that led to Fig. 8. So a third predicate cd3 should
be involved, for yet another mutated CD. Actually, our exercise task generation
strategy uses overall four CDs, and is described next.

We step through an explanation of our generation strategy in the remainder
of this section, along with a concrete example. First of all, we create a random
CD, see CD0 in Fig. 10. In this case, it so happens that CD0 does not contain
any non-inheritance relationship. That limits which mutations are applicable in
the next step here, since for example there are no multiplicities to change, but
in general the next step chooses, twice, from the whole assortment of mutations
listed above. We mutate CD0 into CD1, and CD0 into CD2, see again in Fig. 10.
In this case, CD1 was obtained by adding an association, and CD2 by adding an

2 For example, can you spot which of the five ODs in Fig. 1 do not conform to either
of the two CDs given there?



Prep
rin

t

14

aggregation elsewhere. The thick edge in CD1 will be explained in a short while;
to students it will be shown as normal edge. In general, we now have CD1 and
CD2 that are one or two mutations apart from each other.3 We only continue if
at least one of them contains a non-inheritance relationship; otherwise we start
over with generating a new CD0. The motivation is that CD1 and CD2 will be
the CDs included in the exercise task, and having them contain only inheritance
relationships would not give interesting tasks. Next we mutate CD0 yet again,
into CD3, see Fig. 10. This time, an inheritance was turned into an aggregation.

A

B

C

D

CD0

A B

C

z
2

1..2

D

CD1

A

B

z

2

1..*

C

D

CD2

A

B

C

D

z

2

CD3

Fig. 10. CDs created in the concrete example.

Now, Alloy is asked to find instances for all combinations of CD1/CD2 satis-
fied positively/negatively, with CD3 involved as a “safeguard” in the otherwise
all negative case:

– cd1 and not cd2

– cd2 and not cd1

– cd1 and cd2

– not cd1 and not cd2 and cd3

The search is limited by a maximum number of objects allowed, our default
being four. In addition, structural constraints on the ODs are possible. At the
moment, we use the following Alloy code:

fact LimitIsolatedObjects {

#Obj > mul[2, #{o : Obj | no o.get and no get.o}]

}

to prevent generation of instances where half or more of the objects are not
linked to other objects.

3 By happenstance, they could also be identical, but that would be detected and
rejected in a later step.



Prep
rin

t

15

In the concrete example, the numbers of OD instances found for the calls
listed above are: 23, 9, 0, 5. So here there exists no OD (within the search
constraints) that is an instance of both CD1 and CD2. From the ODs we now
randomly choose five, while ensuring that not more than two are taken from the
same “bucket”, i.e., not three or more ODs that satisfy cd1 and not cd2, etc.
If that is not possible, we start over with generating a new CD0.4 Fig. 11 shows
the five ODs obtained in our example run of the generator, each annotated with
the bucket it came from.

d : D

: D

c : C
z

z

c1 : C

z

z

OD1: ¬CD1, ¬CD2

d : D
a : A

z

a1 : A

z
: D

z

z

OD2: ¬CD1, CD2

: C

c2 : C
z

c3 : C

z

c1 : C

z

z

z

zz

z

OD3: CD1, ¬CD2

: D

d1 : D

c : C

z

z

a : A

OD4: ¬CD1, ¬CD2

d : D

a : A

z

: A

z

OD5: ¬CD1, CD2

Fig. 11. Randomly chosen ODs in the concrete example.

We have implemented the strategy explained above, along with visualisa-
tion etc., and made it available through integration into an e-learning tool at
https://autotool.fmi.iw.uni-due.de/alloy-cd-od. What is shown to students for
each task are CD1 and CD2 (but thick edges turned normal) and OD1–OD5,
of course without the bucket annotations. Immediate feedback is provided on
student answers by checking them against what the tool knows about the origin
(buckets) of the presented ODs. Seeds for the random task generator would be
derived from student identification numbers in an actual course.

4 This is also the step where we would reject the case that CD1 and CD2 happened
to be identical. For if they were, then the first two buckets, cd1 and not cd2 as
well as cd2 and not cd1, would be empty, and it would be impossible to choose
five ODs from the remaining two buckets while not taking more than two from one
bucket.

https://autotool.fmi.iw.uni-due.de/alloy-cd-od


Prep
rin

t

16

What remains to be done here in the paper is to explain the role of thick
edges in CDs. These are associations, aggregations, or compositions that interact
in a somewhat subtle way with inheritance. For example, the thick association
in CD1 in Fig. 10 will be inherited at one end from B to D to C, with the
consequence that C objects can have links to themselves (see OD3 in Fig. 11).
Ultimately, the “puzzle” concerning Fig. 6 in Section 3 was also caused by a
“thick edge” (though it was not depicted thick there). So treatment of these
specific configurations of relationships in CDs is one way of making exercise
tasks less or more challenging. We currently permit them for CD0, for at most
one of CD1 and CD2, but not for CD3. We do not disclose their presence or
absence (showing everything as normal lines instead) to students, just as we do
not disclose CD0, CD3, or which mutations have been made between CDs.

7 Future Work

Besides empirically validating our exercise task generation via use with student
cohorts, it would be interesting to further investigate ways of tailoring tasks
to specific teaching goals. We have already discussed some possibilities, such
as in the last paragraph of the previous section. We could also provide even
more control to instructors for variability of tasks, for example not just letting
them configure the numbers of classes, relationships etc., but also which CD
mutations should be employed in a certain setup (thus allowing generation of
tasks focusing on a specific CD/OD concept, or in which we can actually ask
students for the reasons a certain OD does not conform to a certain CD), or
allowing a larger mutation distance between the CDs used in a task. Extending
the approach in order to go beyond structural aspects of CDs and ODs, for
example by including attribute fields and methods, would be feasible since the
CD2Alloy translation already supports these features. Of course, we would have
to use didactic considerations, such as which kinds of bad examples related to
attributes and methods we want to handle, for devising appropriate mutations
to employ. On a more technical level, future changes could see us using Alloy for
generation of CDs (under a range of structural and possibly other constraints)
as well. And in a departure from our current use of completely artificial class and
object names, we could aim for generating tasks with more meaningful names,
also for attributes etc., instead.

References

1. Object Management Group: Unified Modeling Language (OMG UML), Version
2.5.1 (Dec 2017)

2. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM) 11(2), 256–290 (2002)

3. Jackson, D.: Software Abstractions – Logic, Language, and Analysis, Revised edi-
tion. MIT Press (2011)



Prep
rin

t

17

4. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis using Al-
loy revisited. In: Model Driven Engineering Languages and Systems, Proceedings.
LNCS, vol. 6981, pp. 592–607. Springer (2011)

5. Booch, G.: The unified modeling language user guide. Pearson Education India
(2005)

6. Fowler, M.: UML distilled: A brief guide to the standard object modeling language.
Addison-Wesley Professional (2004)

7. Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language reference
manual. Pearson Higher Education (2004)

8. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-
mation from UML to Alloy. Software and System Modeling 9(1), 69–86 (2010)

9. Massoni, T., Gheyi, R., Borba, P.: A UML class diagram analyzer. In: Workshop
on Critical Systems Development with UML, Proceedings. pp. 143–153 (2004)

10. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDELS Workshops. LNCS, vol. 6002, pp. 158–171. Springer (2009)

11. Kautz, O., Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: A translation of class di-
agrams to Alloy. Techn. Rep. AIB-2017-06, RWTH Aachen University (July 2017)


	Exercise Task Generation for UML Class/Object Diagrams, via Alloy Model Instance Finding



